PROGRAMAÇÃO TANGÍVEL PARA A INCLUSÃO E PROMOÇÃO DAS STEM

CONTRIBUTOS PARA A FORMAÇÃO CONTÍNUA DE PROFESSORES

  • Cecília Vieira Guerra Universidade de Aveiro - DEP - CIDTFF
  • Filipe Moreira Digital Media and Interaction research centre. Departamento de Comunicação e Arte. Universidade de Aveiro
  • Maria José Loureiro CIDTFF. Departamento de Educação e Psicologia. Universidade de Aveiro
  • Isabel Cabrita CIDTFF. Departamento de Educação e Psicologia. Universidade de Aveiro
Palavras-chave: Programação tangível, Inclusão, Educação STEM, Formação contínua de professores

Resumo

O pensamento computacional tem sido destacado como uma importante competência do século XXI. A programação tangível constitui-se uma poderosa via para o seu desenvolvimento. Permite uma aprendizagem ativa dos alunos desde o início da escolaridade, pode contribuir para práticas inclusivas e aliar-se a uma abordagem curricular integradora e flexível nas áreas STEM - Science, Technology, Engineering and Mathematics. Foram estes os pressupostos do projeto TangIn “Tangible programming & inclusion”, cujo principal objetivo foi (co)desenvolver um kit didático para apoiar a utilização da programação tangível em contexto escolar. Este artigo foca-se na apresentação do Projeto e na apresentação dos resultados da avaliação dos eventos realizados na Bulgária, Espanha, Letónia e Portugal para disseminação da referida toolbox.

Referências

Ainscow, M., & Miles, S. (2008). Making education for all inclusive: Where next? Prospects, 38(1), 15-34. https://doi.org/10.1007/s11125-008-9055-0

Bers, M. U., & Horn, M. S. (n.d.). Running head: Tangible Programming in Early Childhood: Revisiting Developmental Assumptions through New Technologies. Medford: Tufts University.

Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for Robotics: Bringing Together the T and E of STEM in Early Childhood Teacher Education. Journal of Technology and Teacher Education, 21(3), 355–377.

Coutinho, C., & Lisboa, E. (2011). Sociedade da Informação, do Conhecimento e da Aprendizagem: Desafios para Educação no Século XXI. Revista de Educação, 28(1), 5-22.

Coutinho, C. P. (2014). Metodologia de Investigação em Ciências Sociais e Humanas: Teoria e Prática (2nd ed.). Coimbra: Edições Almedina.

Falcão, T. P., & Gomes, A. S. (2007). Interfaces Tangíveis para a Educação. Simpósio Brasileiro de Informática na Educação - SBIE, 1(1), 579–589. https://doi.org/10.5753/CBIE.SBIE.2007.579-589

Farr, W., Yuill, N., & Raffle, H. (2010). Social benefits of a tangible user interface for children with Autistic Spectrum Conditions. Publimed, 14(3):237-52. https://doi.org/10.1177/ 1362361310363280

Freeman, B., S. Marginson, and R. Tytler, eds. 2015. The Age of STEM: Educational Policy and Practice Across the World in Science, Technology, Engineering and Mathematics. London: Routledge

Guerra, C., Moreira, A., & Vieira, R. M. (2018). A Design Framework for Science Teachers’ Technological Pedagogical Content Knowledge Development. ISQR2017 – International Symposium on Qualitative Research, 5, 193–203. https://doi.org/10.1007/978-3-319-61121-1_17

Horn, M., & Bers, M. (2019). Tangible Computing. In S. Fincher & A. Robins (Eds.), The Cambridge Handbook of Computing Education Research (pp. 663-678). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108654555.023

Kennedy, T. J., & Odell, M. R. L. (2014). Engaging Students in STEM Education. Science Education International, 25 (3) 246-258.

Kloos, C. D., Munoz-Merino, P. J., Alario-Hoyos, C., Estevez-Ayres, I., Ibanez, M. B., & Crespo-Garcia, R. M. (2018). The hybridization factor of technology in education. 2018 IEEE Global Engineering Education Conference (EDUCON), Global Engineering Education Conference (EDUCON), Tenerife, 1883–1889. https://doi.org/10.1109/EDUCON.2018.8363465

Loureiro, M. J., Guerra, C., Cabrita, I., Moreira, F. T., Gonçalves, D., & Queiroz, J. (2020). Teachers’ training handbook - tangible programming and inclusion in educational context. Aveiro: UA Editora.

Loureiro, M. J., Moreira, F. T., & Senos, S. (2018). Introduction to Computational Thinking With MI-GO: A Friendly Robot. In Lídia Oliveira & Ana Luísa Rego Melro (Eds.), Open and Social Learning in Impact Communities and Smart Territories (pp. 110–137). IGI Global. https://doi.org/10.4018/978-1-5225-5867-5.ch006

Maarkert, L. R. (1996). Gender Related to Success in Science and Technology. The Journal of Technology Studies 22 (2) 21-29. https://doi.org/10.21061/jots.v22i2.a.4

McNerney, T. S. (2000). Tangible Programming Bricks: An approach to making programming accessible to everyone. Massachusetts: Massachusetts Institute of Technology

Morrison, C., Villar, N., Thieme, A., Ashktorab, Z., Taysom, E., Salandin, O., Cletheroe, D., Saul, G., Blackwell, A. F., Edge, D., Grayson, M., & Zhang, H. (2020). Torino: A Tangible Programming Language Inclusive of Children with Visual Disabilities. Human–Computer Interaction, 35(3), 191–239. https://doi.org/10.1080/07370024.2018.1512413

Nusen, N., & Sipitakiat, A. (2011). Robo-blocks: a tangible programming system with debugging for children. In Proceedings of the 19th international conference on computers in education. Chiang Mai (pp. 1-5).

Papert, S. (1980). Children, computers and powerful ideas. New York: Basic Books, Inc.

Rogers, C., & Portsmore, M. (2004). Bringing Engineering to Elementary School. Journal of STEM Education, 5(3 and 4), 17–28.

Sapounidis, T., & Demetriadis, S. (2011). Touch your program with hands: Qualities in tangible programming tools for novice. Proceedings - 2011 Panhellenic Conference on Informatics, PCI 2011. https://doi.org/10.1109/PCI.2011.5

Sapounidis, T., & Demetriadis, S. N. (2012). Exploring children preferences regarding tangible and graphical tools for introductory programming: Evaluating the PROTEAS kit. Proceedings of the 12th IEEE International Conference on Advanced Learning Technologies (ICALT 2012), Rome, 316–320. https://doi.org/10.1109/ICALT.2012.48

Sapounidis, T., Demetriadis, S., Papadopoulos, P. M., & Stamovlasis, D. (2019). Tangible and graphical programming with experienced children: A mixed methods analysis. International Journal of Child-Computer Interaction, 19, 67–78. https://doi.org/10.1016/ j.ijcci.2018.12.001

Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces. International Journal of Technology and Design Education, 25(3), 293–319. https://doi.org/10.1007/s10798-014-9287-7

UN (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. New Yotk: United Nations.

UNESCO. (2005). Guidelines for inclusion: Ensuring access to Education for All. United Nations Educational, Scientific and Cultural Organization. Paris: UNESCO

UNESCO. (2017). A guide for ensuring inclusion and equity in education. Paris: UNESCO

Zuckerman, O., Arida, S., & Resnick, M. (2005). Extending tangible interfaces for education. Proceedings of the SIGCHI conference on Human factors in computing systems (CHI). Montréal, 859–868. https://doi.org/10.1145/1054972.1055093

Publicado
2020-04-22
Secção
Secção 2: Práticas em Educação em Ciências, Matemática e Tecnologia