

Investigação e Práticas em Educação em Ciências, Matemática e Tecnologia

Research and Practices in Science, Mathematics and Technology Education

Section 2: Practices in Science, Mathematics and Technology Education Secção 2: Práticas em Educação em Ciências, Matemática e Tecnologia

EXPERIMENTAÇÃO NUMA AULA DE FÍSICA: KITS DIDÁTICOS OU EXPERIMENTOS SIMPLES DE BAIXO CUSTO?

EXPERIMENTATION IN A PHYSICS CLASS: TEACHING KITS OR SIMPLE, LOW-COST EXPERIMENTS?

EXPERIMENTACIÓN EN UNA CLASE DE FÍSICA: KITS DIDÁCTICOS O

¿EXPERIMENTOS SIMPLES DE BAJO COSTO?

Luciano Gomes de Medeiros Junior & Giovana Luzório do Nascimento

Universidade Federal Fluminense/Instituto do Noroeste Fluminense de Educação Superior, Brasil lucianomedeiros@id.uff.br

RESUMO | Este estudo propõe a utilização de métodos experimentais no ensino de Física como estratégia para contextualizar conceitos teóricos, visando substituir abordagens meramente expositivas por uma aprendizagem significativa. Demonstramos que experimentos de baixo custo (elaborados com materiais reciclados ou acessíveis) e kits industrializados, quando adequadamente integrados à prática docente, apresentam eficácia pedagógica equivalente. Ressalta-se que, para escolas sem laboratórios e recursos financeiros, os experimentos simples constituem ferramentas didáticas valiosas, desde que implementados com planejamento pedagógico. Foram desenvolvidas atividades paralelas, nas quais o mesmo conteúdo foi abordado tanto através de experimentos simples quanto por meio de experimentos especializados. Os resultados indicam que ambas as abordagens transformam a aprendizagem em um processo dinâmico e engajador, superando as limitações do modelo tradicional baseado exclusivamente em aulas expositivas - metodologia na qual os conceitos são frequentemente memorizados temporariamente e rapidamente esquecidos após as avaliações. **PALAVRAS-CHAVE**: Aprendizagem significativa, Experimentos de baixo custo, Métodos experimentais, Ferramentas pedagógicas, Recursos Didáticos em Física.

ABSTRACT | This study proposes the use of experimental methods in Physics teaching as a strategy to contextualize theoretical concepts, aiming to replace merely expository approaches with meaningful learning. We demonstrated that low-cost experiments (made with recycled or accessible materials) and industrialized kits, when properly integrated into teaching practice, present equivalent pedagogical effectiveness. It is worth noting that, for schools without laboratories and financial resources, simple experiments constitute valuable teaching tools, as long as they are implemented with pedagogical planning. Parallel activities were developed, in which the same content was addressed both through simple experiments and through specialized experiments. The results indicate that both approaches transform learning into a dynamic and engaging process, overcoming the limitations of the traditional model based exclusively on expository classes - a methodology in which concepts are often temporarily memorized and quickly forgotten after assessments.

KEYWORDS: Meaningful learning, Low-cost experiments, Experimental methods, Pedagogical tools, Teaching resources in Physics.

RESUMEN | Este estudio propone la utilización de métodos experimentales en la enseñanza de la Física como estrategia para contextualizar conceptos teóricos, buscando sustituir enfoques meramente expositivos por aprendizaje significativo. Demostramos que los experimentos de bajo costo y los kits industrializados, cuando se integran adecuadamente a la práctica docente, presentan una efectividad pedagógica equivalente. Cabe destacar que, para las escuelas que no cuentan con laboratorios ni recursos financieros, los experimentos sencillos constituyen valiosas herramientas, siempre que se implementen con planificación pedagógica. Se desarrollaron actividades paralelas, en las que se abordaron los mismos contenidos tanto a través de experimentos simples como a través de experimentos especializados. Los resultados indican que ambos enfoques transforman el aprendizaje en un proceso dinámico y atractivo, superando las limitaciones del modelo tradicional basado exclusivamente en clases expositivas, una metodología en la que los conceptos a menudo se memorizan temporalmente y se olvidan rápidamente después de las evaluaciones.

PALABRAS CLAVE: Aprendizaje significativo, Experimentos de bajo costo, Métodos experimentales, Herramientas pedagógicas, Recursos didácticos en Física.

1. INTRODUÇÃO

O processo de ensino-aprendizagem em geral, e especialmente na disciplina de Física no Ensino Médio, é considerado uma tarefa complexa. Grande parte das escolas da rede pública de ensino no Brasil não possui recursos básicos que facilitariam esse processo, como laboratórios e outros materiais didáticos auxiliares (Todos Pela Educação, Fundação Santillana, & Editora Moderna, 2024).

A Física é uma disciplina que abrange assuntos teóricos abstratos e envolve diversas equações, algumas delas complexas que na maioria das vezes são simplesmente memorizadas pelos alunos, a fim de resolver exercícios propostos em sala de aula. Essa abordagem baseada na memorização cria nos estudantes certa resistência em relação à disciplina, o que muitas vezes os impede de relacionar a teoria com os fenômenos do seu cotidiano.

Como destaca Fonseca e Costa (2023):

O ensino da física no fundamental envolve os seus conceitos mais básicos e no ensino médio estes são mais aprofundados. Entretanto, algumas das dificuldades do aprendizado desta disciplina são próprias dela, como: a extensão dos conteúdos, seu grau de abstração e seu formalismo matemático (Fonseca & Costa, 2023, p. 2).

A partir deste ponto de vista, fica claro a necessidade de se contextualizar os conteúdos estudados, apresentando exemplos práticos e estabelecendo comparações simples que permitam ao aluno associar os fenômenos vivenciados em seu cotidiano com a teoria apresentada em sala de aula, despertando assim maior interesse pela disciplina.

O uso da experimentação em aulas de Física é um método eficaz para promover a participação ativa dos alunos. Essa abordagem visa integrar atividades práticas aos conceitos teóricos, permitindo, na maioria dos casos, que os estudantes conectem os fenômenos observados com suas experiências diárias. Segundo Nascimento (2018), a natureza exploratória da Física exige uma abordagem didática investigativa e descritiva. Limitar o ensino ao plano puramente teórico priva o aluno da essência experimental da ciência, dificultando uma interação profunda e significativa com a matéria.

Considerando as limitações estruturais frequentes na maioria das escolas públicas, a estratégia de utilizar recursos acessíveis emerge como a solução mais viável para garantir a prática pedagógica. Nesse sentido, Nascimento, et al. (2025) reforçam que a opção por materiais de baixo custo é essencial, destacando que:

Essa abordagem estimula a participação ativa dos alunos, aguça sua curiosidade e interesse, e favorece a aprendizagem. Além disso, contribui para a construção de um ambiente motivador, agradável, desafiador e propício para a produção de conhecimentos, habilidades, atitudes e competências (Nascimento, et al., 2025, p. 5).

A contextualização pedagógico-experimental no Ensino de Física se baseia na utilização de práticas experimentais que, dadas as limitações de recursos nas escolas, têm se concentrado no uso de materiais de baixo custo e materiais recicláveis, embora o uso de kits didáticos industriais (incluindo aqueles com tecnologia moderna, como o Arduíno) também seja explorado (Silva, 2025; Silva, et al., 2024; Alves & Medeiros, 2023).

O uso dessas metodologias tem se mostrado um instrumento motivador e uma alternativa eficaz para a melhoria e democratização da qualidade do ensino, especialmente em contextos de vulnerabilidade socioeconômica (Silva, 2025; Bório, 2022).

A integração de recursos virtuais a materiais de baixo custo expande as possibilidades pedagógicas, permitindo o desenvolvimento simultâneo de competências científicas e tecnológicas. Essa combinação favorece o acesso à informação e estimula a aplicação de conceitos de forma interativa, ampliando a capacidade dos estudantes de enfrentar desafios contemporâneos. Mesmo em cenários eminentemente empíricos, como laboratórios escolares, a utilização de tecnologias acessíveis potencializa a qualidade da experiência didática, tornando-a mais instigante e contextualizada (Silva, 2025, p. 15).

Freire (1997), afirma que, para compreender verdadeiramente a teoria, não devemos simplesmente decorá-la, mas vivenciá-la em situações que promovam reflexão. Essa perspectiva alinha-se ao método construtivista proposto por Piaget (1973), que defende que os alunos devem chegar a suas próprias conclusões a partir das experiências vivenciadas.

Ao engajar-se em debates onde diferentes pontos de vista e evidências são confrontados, o estudante é desafiado a reestruturar seus esquemas mentais, superando suas concepções iniciais. Dessa forma, o aluno não apenas vivencia práticas científicas autênticas, mas constrói ativamente tanto os conceitos das ciências quanto a compreensão sobre a natureza do conhecimento científico (Sasseron, 2020).

Nosso trabalho adotou uma abordagem prática que incluiu uma análise comparativa entre experimentos simples e sofisticados, abordando os mesmos temas (Movimento Retilíneo Uniforme, Trocas de Calor: Equilíbrio Térmico e Propagação Retilínea da Luz: Reflexão Regular), com o objetivo de avaliar a eficácia da experimentação nas aulas de Física, seja com materiais de baixo custo ou com equipamentos especializados adquiridos de empresas especializadas na venda de kits didáticos. O estudo contou com a participação de 20 alunos das três séries do Ensino Médio e oito professores de diversas áreas. Os resultados evidenciaram que ambos os tipos de experimento — sofisticados e de baixo custo — foram igualmente importantes para articular teoria e prática.

A inclusão de oito professores de diversas áreas no estudo, para além dos alunos, não foi aleatória, mas uma estratégia metodológica deliberada. Essa decisão decorre da realidade regional, caracterizada pela escassez de professores de Física com formação específica — o que leva docentes de outras disciplinas a assumirem a cadeira. A participação desse grupo diversificado validou, assim, a experimentação simples como uma ferramenta de baixo custo e alta viabilidade, capaz de aprimorar a prática pedagógica de docentes não especialistas.

2. A EXPERIMENTAÇÃO NO ENSINO DE FÍSICA: FUNDAMENTOS TEÓRICOS E PRÁTICAS PEDAGÓGICAS

A experimentação é essencial no ensino da Física, defendida desde Aristóteles, que afirmava que sem ela, o universo não pode ser compreendido (Silva, Miranda & Vianna, 2023). A Física, por sua natureza, baseia-se na experimentação para explicar fenômenos e validar teorias. Em sala de aula, a experimentação estimula o senso crítico, a curiosidade e a conexão entre teoria e prática, permitindo que os alunos compreendam melhor o mundo ao seu redor.

Santos (2021) salienta que as escolas que adotam regularmente atividades experimentais obtêm melhores resultados na compreensão conceitual e na resolução de problemas. Contudo, estudos recentes (Dantas & Silva, 2023), demonstram que a eficácia da experimentação depende de condições específicas: integração adequada com a teoria, planejamento pedagógico cuidadoso, contextualização com a realidade dos alunos e reflexão crítica sobre os resultados. Estes princípios alinham-se com as recomendações da Base Nacional Comum Curricular (BNCC) (Brasil, 2018) que reforça a importância do equilíbrio entre teoria e prática no ensino de Física, alinhando-se às discussões contemporâneas sobre experimentação.

Contudo, apesar do reconhecimento dessas abordagens mais elaboradas, o método demonstrativo, conforme Costa e Venturi, (2021), continua sendo o mais utilizado pelos professores, especialmente devido à insegurança metodológica e limitações de infraestrutura. Araújo e Abib (2003), corroborados por estudos recentes (Lopes & Pastorio, 2024), classificam as atividades experimentais em demonstração, verificação e investigação.

Na perspectiva do ensino de Física, as atividades experimentais podem ser organizadas em três modalidades básicas: (1) as demonstrações, onde o professor exibe fenômenos físicos de forma ilustrativa, privilegiando a observação passiva por parte dos alunos; (2) as verificações, que buscam confirmar leis e princípios preestabelecidos em aulas teóricas, seguindo roteiros predeterminados; e (3) as investigações, que envolvem os alunos em autênticos processos de descoberta científica, desde a formulação de problemas até a análise crítica dos resultados, desenvolvendo habilidades cognitivas superiores (Araújo & Abib, 2003, p. 177).

A experimentação em sala de aula deve buscar a contextualização dos conceitos teóricos, sendo que a escolha da metodologia deve sempre considerar os recursos disponíveis e a infraestrutura da escola (Aguiar, Rocha & Soares, 2021). Nesse sentido, podem-se adotar duas modalidades complementares: os experimentos simples, que utilizam materiais de baixo custo e sucatas para demonstrar princípios físicos com rigor científico (Moreira, 2016; Oliveira & Lima, 2016); e a experimentação sofisticada, que emprega equipamentos especializados e kits industriais (Hofstein & Lunetta, 2004), exigindo maior investimento financeiro e infraestrutura adequada (como bancadas e espaços específicos).

Conforme Silva (2025), os experimentos simples oferecem vantagens significativas para o ensino de Física, especialmente em contextos de recursos limitados. Desenvolvidos com materiais acessíveis e de baixo custo, eles reduzem as barreiras econômicas, democratizando o acesso ao conhecimento científico. Além disso, por utilizarem materiais do cotidiano, facilitam a replicação em casa, estendendo a aprendizagem. O autor destaca ainda que essa abordagem estimula a criatividade na resolução de problemas e promove uma conexão mais direta entre os conceitos físicos e as experiências cotidianas dos estudantes.

Conclui-se, portanto, que a utilização de materiais recicláveis e de baixo custo nas aulas práticas de Física transcende o argumento econômico. Trata-se de uma abordagem que integra dimensões pedagógicas, sociais e ambientais, promovendo um ensino mais equitativo, contextualizado e comprometido com a formação integral do estudante. Ao mesmo tempo em que viabiliza a realização de experimentos em escolas com recursos limitados, essa estratégia fomenta a criatividade, a inovação e a consciência socioambiental, preparando os alunos para atuar de forma crítica e propositiva diante dos desafios do século XXI (Silva, 2025, p. 18).

Por outro lado, como argumentam Sasseron e Carvalho (2011), os experimentos sofisticados, realizados com equipamentos especializados, oferecem vantagens distintas no processo de ensino-aprendizagem. Estes permitem maior precisão nas medições e observações, aspecto fundamental para o desenvolvimento de habilidades científicas rigorosas. Além disso, os equipamentos especializados possibilitam a exploração de fenômenos mais complexos e apresentam melhor adequação aos currículos formais, seguindo as sequências didáticas convencionais.

Os kits experimentais industrializados trazem consigo a vantagem da precisão e padronização, elementos essenciais para o desenvolvimento de habilidades científicas mais rigorosas. No entanto, sua eficácia pedagógica depende fundamentalmente da mediação docente que articule a manipulação técnica com a reflexão conceitual, garantindo que os estudantes não apenas reproduzam procedimentos, mas compreendam os princípios científicos subjacentes e suas aplicações sociais. Esta abordagem deve integrar-se a um ensino que valorize tanto o domínio instrumental quanto a capacidade crítica de analisar o papel da ciência e da tecnologia na sociedade contemporânea (Sasseron & Carvalho, 2011, p. 70).

A escolha entre estas abordagens experimentais deve ser cuidadosamente ponderada, considerando diversos fatores pedagógicos e contextuais. Como recomenda a BNCC, essa decisão deve levar em conta os objetivos de aprendizagem específicos de cada conteúdo, o contexto escolar particular e, principalmente, a realidade concreta dos alunos.

3. DESCRIÇÃO DA PRÁTICA EDUCATIVA E SUA IMPLEMENTAÇÃO

Para este trabalho, foram selecionados três temas de Física do Ensino Médio: Movimento Retilíneo Uniforme, Troca de Calor: Equilíbrio Térmico e Propagação Retilínea da Luz: Leis da Reflexão. Cada tema foi abordado por meio de duas estratégias experimentais: experimentos simples, construídos com materiais acessíveis no campus do Instituto do Noroeste Fluminense de Educação Superior (INFES) da Universidade Federal Fluminense (UFF), e experimentos sofisticados (kits industriais do laboratório da UFF), que foram levados à escola. A pesquisa foi conduzida no Colégio Estadual Rui Guimarães de Almeida, em Santo Antônio de Pádua (RJ), envolvendo 20 alunos e 8 professores, em um total de oito encontros. A abordagem didática adotada privilegiou uma concepção construtivista e investigativa de experimentação, na qual os alunos foram instigados a formular hipóteses, coletar e analisar dados criticamente, e estabelecer relações entre a teoria e a evidência experimental. A dinâmica aplicada, idêntica para ambos os tipos de experimento, consistiu em: explicação do conceito teórico; demonstração e coleta de dados com o experimento simples; apresentação do experimento sofisticado sobre o mesmo tema, também com coleta de dados; e, por fim, uma discussão crítica comparando as abordagens e suas relações com a teoria.

A pesquisa adotou uma abordagem metodológica mista, integrando as naturezas bibliográfica, qualitativa e quantitativa. Inicialmente, foi realizado um levantamento bibliográfico sistemático, fundamental para a construção do referencial teórico e para o mapeamento do estado da arte sobre o tema (Tako & Kameo, 2023; Ocaña-Fernández & Fuster-Guillén, 2021). Em seguida, na dimensão qualitativa, o estudo valeu-se da observação como procedimento principal, com o objetivo de capturar a subjetividade e os sentidos implícitos presentes no contexto investigado, examinando as questões sociais e ideológicas que permeiam a linguagem e as

percepções (Silva & Araújo, 2017; Ibpad, 2022). Por fim, a etapa quantitativa consistiu na análise estatística descritiva das respostas obtidas por meio de questionários aplicados a alunos e professores, com vistas a avaliar suas percepções sobre a prática em questão e identificar possíveis melhorias (Qualibest, 2020).

Durante as aulas, adotamos a metodologia dos Três Momentos Pedagógicos (3MP), proposta por Delizoicov, Angotti & Pernambuco (2011). Desenvolvida por Demétrio Delizoicov Neto — físico e doutor em Educação pela Universidade de São Paulo (USP) — em parceria com José André Angotti, essa abordagem é reconhecida na área educacional por sua eficácia no processo de ensino-aprendizagem. A metodologia baseia-se em três etapas principais: problematização inicial, organização do conhecimento e aplicação do conhecimento (Urel, 2022).

Na problematização inicial, conduzimos questionamentos sobre os conceitos a serem trabalhados, utilizando as respostas dos alunos para diagnosticar e refinar seus conhecimentos prévios. Em seguida, na fase de organização do conhecimento, apresentamos os fundamentos teóricos, relacionando-os diretamente aos experimentos que seriam demonstrados logo em seguida. Por fim, na aplicação do conhecimento, propomos algumas questões relativas aos temas estudados, alcançando um alto índice de acertos.

3.1 Primeiro assunto trabalhado: Movimento Retilíneo Uniforme (MRU)

A abordagem começou com a definição de referencial, demonstrando aos alunos que um corpo pode ou não estar em movimento, dependendo do referencial adotado. Em seguida, definimos o Movimento Retilíneo Uniforme (MRU) como um movimento em linha reta com velocidade constante ao longo de toda a trajetória, apresentando a equação da velocidade média.

Com base na equação da velocidade média, mostramos aos alunos que a variação da distância percorrida é proporcional ao intervalo de tempo gasto para completar o percurso. Após a explicação teórica, utilizamos os dois experimentos, permitindo aos alunos visualizarem o fenômeno físico tanto em uma versão simplificada quanto em uma configuração mais avançada, reforçando a compreensão teórica por meio da prática. A Figura 1 mostra os dois experimentos: o simples, confeccionado com materiais de baixo custo, e o sofisticado (trilho de ar).

Figura 1 Experimentos utilizados na contextualização do tema Movimento Retilíneo Uniforme (MRU). a) Experimento simples; b) Experimento sofisticado (trilho de ar).

3.1.1 Aplicação do experimento simples

Para a realização do experimento, foram utilizados os seguintes materiais: um cronômetro digital, um pedaço de papelão, quatro tampas de garrafa *PET*, dois palitos de churrasco, dois canudos plásticos, uma tábua de madeira reta e uma fita métrica.

Na montagem, fixamos a fita métrica na tábua para medir distâncias, e construímos um carrinho utilizando o papelão como base, canudos como eixos, palitos de churrasco como suporte e tampas de garrafa *PET* como rodas.

Durante a execução, definimos um trecho retilíneo na tábua para medir o deslocamento do carrinho. O tempo de percurso foi cronometrado com um cronômetro digital e dois celulares (para maior precisão). Os dados iniciais, reunidos na Tabela 1, possibilitaram o cálculo da velocidade média. Em seguida, variamos as distâncias percorridas pelo carrinho e registramos os correspondentes intervalos de tempo. Essa variação, também detalhada na Tabela 1, demonstrou claramente aos alunos a constância da velocidade no MRU: ao aumentar a distância percorrida, o tempo de percurso aumentou proporcionalmente, mantendo a relação $v = \Delta S/\Delta t$ (velocidade média) praticamente invariável.

Intervalo de espaço (m)	Intervalo de tempo (s)	Velocidade (m/s)		
0,50	1,33	0,376		
0,50	1,32	0,379		
0,50	1,33	0,376		
variando as distâncias entre os sensores				
Intervalo de espaço (m)	Intervalo de tempo (s)	Velocidade (m/s)		

Tabela 1- Cálculo da velocidade por meio do experimento de baixo custo

 Intervalo de espaço (m)
 Intervalo de tempo (s)
 Velocidade (m/s)

 0,30
 0,80
 0,375

 0,40
 1,06
 0,377

 0,50
 1,33
 0,376

 0,60
 1,60
 0,375

Esta etapa prática permitiu: 1) Comprovar experimentalmente a característica fundamental do MRU (velocidade constante); 2) Visualizar a proporcionalidade direta entre distância percorrida e tempo gasto; e 3) Validar os cálculos teóricos através de dados experimentais reais.

3.1.2 Aplicação do experimento sofisticado

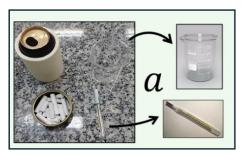
O experimento foi realizado utilizando um trilho de ar, um cronômetro digital multifunções, dois sensores ópticos, um carrinho para trilho de ar, um suporte de 9 g com massa adicional de $20 \ g$ e um fio de conexão de $20 \ cm$ entre o carrinho e o suporte.

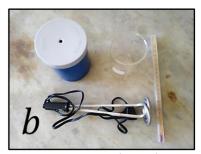
Na montagem, o trilho de ar foi fixado em posição nivelada na bancada, e os sensores ópticos foram conectados a ele, posicionados a uma distância conhecida, e acoplados ao cronômetro para medição precisa do tempo. O sistema de acionamento foi configurado amarrando-se o fio ao carrinho e ao suporte de massas, que foi posicionado a $20\ cm$ de altura

para gerar movimento uniforme, garantindo que a massa tocasse o chão antes da passagem pelo segundo sensor.

Durante a execução, definimos uma distância fixa (ΔS) entre os sensores. O sistema foi liberado, e o tempo de passagem (Δt) entre os sensores foi registrado, permitindo o cálculo da velocidade média $(v=\Delta S/\Delta t)$, registrados na Tabela 2. Em seguida, variamos as distâncias entre os sensores e registramos novos intervalos de tempo, demonstrando experimentalmente que a velocidade do carrinho se mantém constante, conforme os dados também apresentados na Tabela 2. O experimento demonstrou eficiência na análise do movimento uniforme, validando os princípios físicos envolvidos.

Tabela 2- Cálculo da velocidade por meio do experimento sofisticado (trilho de ar)


Intervalo de espaço (m)	Intervalo de tempo (s)	Velocidade (m/s)		
0,40	0,376	1,064		
0,40	0,375	1,067		
0,40	0,375	1,067		
variando as distâncias entre os sensores				
Intervalo de espaço (m)	Intervalo de tempo (s)	Velocidade (m/s)		
Intervalo de espaço (m) 0,10	Intervalo de tempo (s) 0,092	Velocidade (<i>m/s</i>) 1,087		
	- ', '	· , ,		
0,10	0,092	1,087		


Esta etapa permitiu: 1) Comprovar a constância da velocidade no MRU; 2) Visualizar a relação linear entre distância percorrida e tempo gasto; e 3) Validar os princípios teóricos através de medições mais precisas. Os dados da Tabela 2 mostram claramente que, apesar do aumento nas distâncias percorridas, a velocidade média permaneceu praticamente constante, caracterizando o movimento retilíneo uniforme.

Na abordagem realizada em sala de aula, buscamos relacionar os resultados teóricos previstos pela equação da velocidade média com os dados obtidos experimentalmente. Tanto o experimento artesanal (simples) quanto o industrial (sofisticado) demonstraram consistentemente que a velocidade se mantém constante durante o percurso, confirmando as características fundamentais do Movimento Retilíneo Uniforme (MRU). Enfatizamos que as pequenas variações observadas nos resultados podem ser atribuídas a diversos fatores experimentais, como imperfeições na montagem do material artesanal, mínimas oscilações no trilho de ar ou mesmo pequenas variações no tempo de reação durante as marcações com o cronômetro.

3.2 Segundo assunto trabalhado: Troca de Calor: Equilíbrio Térmico

Nossa proposta inicial visava demonstrar aos alunos que, ao misturar dois líquidos com temperaturas iniciais diferentes em um mesmo recipiente, ocorre troca de calor entre eles até que atinjam uma temperatura final de equilíbrio térmico, que estará entre as temperaturas iniciais dos líquidos. A Figura 2 mostra os dois experimentos: o simples, confeccionado com materiais de baixo custo e o sofisticado, da empresa *Azeheb*.

Figura 2 Experimentos utilizados na contextualização do tema Troca de Calor: Equilíbrio Térmico. a) Experimento simples; b) Experimento sofisticado.

3.2.1 Aplicação do experimento simples

Para a realização do experimento, foram utilizados os seguintes materiais: uma lata de alumínio, uma caixa de isopor (como isolante térmico), um termômetro clínico de mercúrio, um queimador caseiro (feito com álcool e giz) e um recipiente resistente ao calor (como um Becker ou copo de vidro).

Procedimentos de segurança: antes de iniciar as atividades que envolviam o uso de chama, foram implementados e claramente comunicados aos participantes os seguintes protocolos de segurança: o ambiente foi mantido arejado e longe de materiais inflamáveis; o manuseio do queimador e do álcool foi restrito aos pesquisadores responsáveis, que utilizaram equipamentos de proteção individual, como luvas térmicas; e um extintor de incêndio foi mantido nas proximidades como medida de precaução.

Na montagem, preparamos um sistema isolado termicamente, encaixando a lata de alumínio dentro do isopor para reduzir as trocas de calor com o ambiente. Em seguida, aquecemos a água utilizando o queimador de álcool no recipiente de vidro, seguindo os protocolos de segurança estabelecidos.

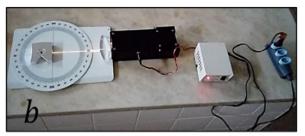
O experimento foi executado em três etapas principais: 1) Preparação inicial — Adicionamos $100\,ml$ de água a $26^{\circ}\mathrm{C}$ (temperatura ambiente) dentro da lata isolada; 2) Aquecimento e mistura — Aquecemos outros $100\,ml$ de água até $38^{\circ}\mathrm{C}$ e misturamos com a água já presente na lata; e 3) Observação do equilíbrio térmico — A temperatura da mistura foi monitorada com o termômetro, verificando-se que o sistema atingiu o equilíbrio térmico a aproximadamente $33^{\circ}\mathrm{C}$, valor intermediário entre as temperaturas iniciais, conforme o esperado. A prática demonstrou de forma simples e eficaz os princípios da troca de calor e do equilíbrio térmico, validando conceitos básicos da termodinâmica.

3.2.2 Aplicação do experimento sofisticado

Foram utilizados os seguintes materiais: um calorímetro, um termômetro com escala de 10° C a 110° C, um aquecedor e um béquer. Como os equipamentos já se encontravam prontos para uso, não foi necessária nenhuma montagem adicional.

O experimento foi conduzido em três etapas: 1) Na preparação inicial, adicionamos $50~m\ell$ de água a 26°C (temperatura ambiente) no interior do calorímetro; 2) Para o aquecimento e mistura: Aquecemos outros $50~m\ell$ de água no béquer até 60°C utilizando o aquecedor, onde a água aquecida foi então transferida para o calorímetro, com monitoramento contínuo da temperatura através do termômetro; e 3) Na observação do equilíbrio térmico, verificou-se que após cerca de 3 minutos o sistema se estabilizou a 43°C , valor intermediário coerente com as temperaturas iniciais de 26°C e 60°C .

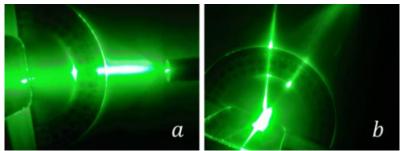
Os resultados obtidos demonstraram claramente a ocorrência do equilíbrio térmico entre as duas massas de água com temperaturas diferentes, validando os princípios básicos da calorimetria. O uso do calorímetro garantiu precisão nas medições ao minimizar as trocas de calor com o ambiente externo.


Os experimentos demonstraram muito bem os conceitos de trocas de calor e equilíbrio térmico, comprovando que a temperatura final de uma mistura depende das temperaturas iniciais e das quantidades das substâncias envolvidas.

3.3 Terceiro assunto trabalhado: Propagação Retilínea da Luz: Leis da Reflexão

Inicialmente, apresentamos os conceitos fundamentais, começando pela propagação retilínea da luz em meios homogêneos e transparentes. Para tornar este princípio mais concreto, utilizamos exemplos do cotidiano como a formação de sombras e os fenômenos dos eclipses.

No estudo da lei da reflexão da luz, introduzimos o conceito de que o ângulo de incidência $(\hat{\theta}_i)$ é igual ao ângulo de reflexão $(\hat{\theta}_r)$. Durante as explicações, observamos que os estudantes apresentavam dificuldade em visualizar corretamente esses ângulos, especialmente na identificação da linha normal (perpendicular à superfície refletora) e na compreensão da relação entre os raios incidente e refletido. A Figura 3 mostra os dois experimentos: o simples, confeccionado com materiais de baixo custo e o sofisticado, da empresa Azeheb.


Figura 3 Experimentos utilizados na contextualização do tema Propagação Retilínea da Luz: Leis da Reflexão. a) Experimento simples; b) Experimento sofisticado.

3.3.1 Aplicação do experimento simples

Para investigar os fenômenos ópticos da reflexão e propagação da luz, realizamos um experimento utilizando um ponteiro laser, um espelho plano, um transferidor e um suporte adequado. O laser foi fixado no suporte e posicionado de modo que seu feixe incidisse perpendicularmente sobre o espelho, com o transferidor alinhado para medição precisa dos ângulos.

Inicialmente, comprovamos a propagação retilínea da luz, observando que o feixe laser mantinha uma trajetória perfeitamente reta em seu percurso. Em seguida, estudamos a lei da reflexão, posicionando a normal do espelho na marca de 90° do transferidor. Medindo cuidadosamente os ângulos de incidência $(\hat{\theta}_i)$ e reflexão $(\hat{\theta}_r)$, verificamos que ambos eram iguais, confirmando experimentalmente o princípio fundamental de que $\hat{\theta}_i = \hat{\theta}_r$.

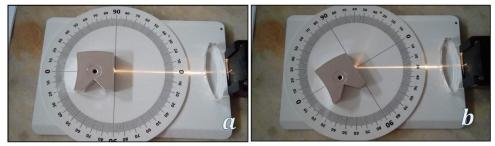
Os resultados, registrados na Tabela 3, demonstraram excelente precisão, validando tanto a propagação retilínea quanto a lei da reflexão. A simplicidade da montagem não comprometeu a qualidade dos dados obtidos, mostrando-se eficaz para fins didáticos e comprovando de maneira clara esses importantes conceitos da óptica geométrica. O experimento destacou a relação direta entre teoria e prática, reforçando o entendimento sobre o comportamento da luz.

Figura 4 Experimento de baixo custo: a) demonstração da propagação retilínea; b) demonstração da Lei da Reflexão.

O experimento permitiu visualizar claramente ambos os fenômenos ópticos em estudo. Os dados obtidos, conforme apresentados na Tabela 3, validaram a lei da reflexão com boa precisão, demonstrando a consistência entre os resultados experimentais e os princípios teóricos. Além disso, a montagem simples utilizada se mostrou eficaz para fins didáticos, pois possibilita uma reprodução acessível em ambientes educacionais.

Tabela 3- Dados obtidos para a lei da reflexão obtidos por meio do experimento simples

Marcação	Ângulo de incidência	Ângulo de reflexão
1	0,0°	0,0°
2	15,0°	14,8°
3	25,0°	25,0°
4	35,0°	35,0°


3.3.2 Aplicação do experimento sofisticado

O experimento foi realizado utilizando os seguintes materiais: uma fonte de luz de 12V DC, um diafragma de fenda única, uma superfície refletora com transferidor integrado e uma fonte de alimentação regulável. A montagem experimental consistiu em conectar a fonte luminosa à alimentação de 12V, acoplar o diafragma de fenda única à saída da fonte e posicionar cuidadosamente a superfície refletora com transferidor, garantindo seu alinhamento preciso com o feixe luminoso.

Na primeira etapa do experimento, demonstramos a propagação retilínea da luz. Ao acionar a fonte luminosa, observamos claramente (Figura 5a) que o feixe mantinha trajetória perfeitamente retilínea após passar pela fenda do diafragma, confirmando este princípio fundamental da óptica geométrica.

Para investigar a lei da reflexão (Figura 5b), procedemos à variação sistemática do ângulo de incidência $(\hat{\theta}_i)$, registrando-se para cada caso o correspondente ângulo de reflexão $(\hat{\theta}_r)$, conforme anotado na Tabela 4. Os dados obtidos comprovaram experimentalmente, com excelente precisão, a igualdade $\hat{\theta}_i = \hat{\theta}_r$ em todas as configurações testadas, validando assim a lei fundamental da reflexão.

A utilização de equipamentos adequados, em particular a superfície refletora com transferidor integrado, permitiu medições angulares precisas e reprodutíveis. O experimento mostrou ser eficaz tanto para demonstrar os princípios ópticos estudados quanto para reforçar a relação entre teoria e observação experimental.

Figura 5 Experimento do *kit* didático de óptica geométrica: a) demonstração da propagação retilínea; b) demonstração da Lei da Reflexão.

Ambos os experimentos demonstraram eficácia na contextualização dos conceitos de Lei da Reflexão e Propagação Retilínea da Luz. O experimento industrial, com sua maior precisão e estabilidade, permitiu medições quantitativas mais rigorosas, facilitando a compreensão dos princípios físicos envolvidos. Já o experimento de baixo custo, desenvolvido com materiais acessíveis, apresentou-se como uma alternativa viável e didática, especialmente para escolas com recursos limitados.

Tabela 4- Dados obtidos para a Lei da Reflexão obtidos por meio do experimento sofisticado

Marcação	Ângulo de incidência	Ângulo de reflexão
1	0,0°	0,0°
2	15,0°	15,0°
3	35,0°	35,0°
4	60,0°	60,0°

Portanto, é possível adaptar o ensino de Óptica Geométrica a diferentes realidades educacionais. Enquanto os kits industriais oferecem maior exatidão para análises detalhadas, os experimentos simplificados garantem que o aprendizado prático não fique restrito a instituições com infraestrutura laboratorial completa. Assim, ambos os métodos se complementam, reforçando a importância da experimentação no ensino de Física.

4. AVALIAÇÃO DA IMPLEMENTAÇÃO DA PRÁTICA E PRINCIPAIS RESULTADOS

Após as atividades, aplicamos um questionário, cuja finalidade foi avaliar, de forma qualitativa, a opinião dos alunos sobre a utilização desses experimentos em sala de aula: 1) Qual a sua série do Ensino Médio?; 2) Como você avalia a exposição? (Ótima, Boa, Regular, Insuficiente); 3) Você gostou mais dos experimentos simples ou sofisticados? Por quê?; e 4) Qual tema você achou mais interessante? Por quê?.

Os dados coletados junto aos alunos participantes revelaram resultados significativos sobre a recepção das atividades experimentais. As respostas à primeira pergunta do questionário, revelaram que tivemos um total de 20 alunos, sendo nove alunos do 1º Ano, quatro alunos do 2º Ano e sete alunos do 3º Ano. No que se refere à avaliação da exposição dos temas (questão 2), a maioria esmagadora dos 20 alunos considerou-a "Ótima" (17 alunos), com o restante classificando-a como "Boa" (3 alunos). Quanto à preferência metodológica (questão 3), dos 19 alunos que responderam, houve uma clara inclinação para os experimentos "Simples" (15 alunos), contrastando com apenas 1 aluno que preferiu os "Sofisticados", e 3 que gostaram de "Ambos". Por fim, a análise do tema mais interessante (questão 4) revelou que o Movimento Retilíneo Uniforme (MRU) foi o mais popular (8 alunos), seguido por Calorimetria (6 alunos) e Reflexão da Luz (5 alunos), com apenas 1 aluno afirmando ter gostado de todos os temas igualmente.

Tais resultados comprovam a excelente aceitação das atividades experimentais, a nítida preferência por abordagens simples e acessíveis e a necessidade de manter a diversidade temática, concluindo que a combinação entre simplicidade metodológica e variedade de conteúdos foi a mais eficaz para o engajamento no aprendizado de Física.

Para os professores, aplicamos um questionário parecido para também fazer uma análise qualitativa de suas percepções. 1) Qual a sua área de formação?; 2) Qual disciplina você ministra em sala de aula?; 3) Como você avalia a exposição? (Ótima, Boa, Regular, Insuficiente); 4) Você gostou mais dos experimentos simples ou sofisticado? Por quê? e 5) Qual o tipo de experimento você usaria em suas aulas, o simples ou o sofisticado? Por quê?.

A análise das respostas das questões 1 e 2, revelou uma diversidade significativa na formação e atuação dos docentes participantes: um biólogo lecionando Física e Química, quatro matemáticos (sendo um atuando em Física), um físico, um químico e um professor de Artes. Esses

dados mostram que dois professores ministravam Física sem formação específica na área, destacando o valor da experimentação prática como complemento pedagógico.

A avaliação dos professores também indicou um alto grau de satisfação com o projeto. Na avaliação da exposição (questão 3), a maioria dos 8 professores a classificou como "Ótima" (7 professores), com apenas 1 classificando-a como "Boa". No que tange à preferência pessoal por modalidade experimental (questão 4), todos os professores manifestaram apreço pelas abordagens mais acessíveis: 6 preferiram os experimentos "Simples" e 2 gostaram de "Ambos", não havendo preferência exclusiva pelo sofisticado. Essa inclinação metodológica se confirmou na escolha para uso em sala de aula (questão 5): 5 professores usariam exclusivamente o tipo "Simples", 2 usariam "Ambos" e apenas 1 professor optaria pelo "Sofisticado" em suas aulas, confirmando a relevância da metodologia de baixo custo para o contexto escolar.

Os resultados reforçam que a abordagem experimental simples se configura como metodologia inclusiva e eficaz, alinhando-se às demandas reais da educação científica contemporânea. A combinação entre baixo custo, alto impacto pedagógico e adaptabilidade interdisciplinar foi particularmente valorizada pelos docentes.

5. CONCLUSÕES E IMPLICAÇÕES

Este trabalho comprovou a eficácia da experimentação como estratégia pedagógica no ensino de Física, com 85% dos alunos e professores avaliando as atividades como "Ótimas". Os experimentos modificaram positivamente a percepção dos estudantes, mostrando que a Física vai além da teoria e está presente no cotidiano.

Houve uma clara preferência pelos experimentos de baixa complexidade (80% das respostas), o que reforça a viabilidade da abordagem em escolas com recursos limitados. Essa receptividade foi atribuída ao uso de materiais acessíveis (45%) e à facilidade de compreensão (30%). Os experimentos sofisticados, embora relevantes para o aprofundamento teórico, foram menos preferidos devido à sua complexidade e necessidade de infraestrutura.

Os professores destacaram a efetividade do método de baixo custo, seu alto engajamento e a capacidade de transformar conceitos abstratos em aprendizagem contextualizada. A participação ativa dos alunos na coleta e análise de dados foi um diferencial significativo, com temas como Movimento Retilíneo Uniforme (40%) e Trocas de Calor (30%) se tornando mais atrativos pela abordagem prática.

Podemos concluir que a experimentação simples é uma estratégia democrática e eficiente, alinhada às diretrizes educacionais e promotora de um aprendizado eficaz. A priorização de atividades de baixa complexidade pode ampliar o acesso a um ensino científico mais inclusivo, especialmente em ambientes com poucos recursos, sendo um caminho promissor para desmistificar a Física e estimular o interesse pela ciência.

REFERÊNCIAS

- Aguiar, C. C. de, Rocha, M. B. da S., & Soares, G. de O. (2021). Metodologias ativas e o Ensino de Ciências Biológicas na educação básica: um mapeamento. Interritórios | *Revista de Educação*, 7(15), 39–55. https://doi.org/10.51359/2525-7668.2021.252826
- Alves, L. V. S., & Medeiros, L. da S. (2023). O uso de materiais de baixo custo no ensino da física: uma alternativa para a recomposição e compreensão do ensino de física na EEMTI Luíza Távora. In *Anais do Congresso Nacional de Educação (CONEDU)*. Realize Editora. https://editorarealize.com.br/artigo/visualizar/96907
- Araújo, M. S. T.; Abib, M. L. V. S. (2003). Atividades Experimentais no Ensino de Física: diferentes enfoques, diferentes finalidades. *Revista Brasileira de Ensino de Física*, v. 25, n. 2, p. 176-194. https://www.scielo.br/j/rbef/a/PLkjm3N5KjnXKgDsXw5Dy4R/?format=pdf&lang=pt
- Bório, A. B. (2022). Os materiais de baixo custo em práticas experimentais da educação básica: delineamentos da produção acadêmica no ensino de física [Dissertação de Mestrado, Universidade Estadual do Oeste do Paraná]. Repositório Institucional da UNIOESTE. https://tede.unioeste.br/handle/tede/6110
- Brasil. Ministério da Educação. (2018). Base Nacional Comum Curricular. https://basenacionalcomum.mec.gov.br/
- Costa, L. V., & Venturi, T. (2021). Metodologias Ativas no Ensino de Ciências e Biologia: compreendendo as produções da última década. *Revista Insignare Scientia RIS*, 4(6). https://doi.org/10.36661/2595-4520.2021v4i6.12393
- Dantas, L. V. de A., & Silva, F. C. da. (2023). *Metodologias ativas no ensino de ciências: uma revisão sistemática* [Trabalho de Conclusão de Curso de Especialização, Universidade Federal do Vale do São Francisco]. Repositório Institucional UNIVASF.

 https://repositorio.univasf.edu.br/server/api/core/bitstreams/fa2375a3-daa2-4f0a-be0f-ef8fe26fa6fd/content
- Delizoicov, D., Angotti, J. A., & Pernambuco, M. M. (2011). *Ensino de ciências: fundamentos e métodos* (4th ed.). Cortez.
- Fonseca, J. C. A., & Costa, M. S. (2023). Desafios na aprendizagem de Física no Ensino Médio das escolas públicas: Uma revisão da literatura. *Research, Society and Development, 12*(7), e2812742440. https://doi.org/10.33448/rsd-v12i7.42440
- Freire, P. (1997). Pedagogia da autonomia: saberes necessários à prática educativa. Paz e Terra.
- Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. *Science Education*, *88*(1), 28-54. https://doi.org/10.1002/sce.10106
- Ibpad. (2022). Pesquisa Qualitativa: Análise de discurso e análise de conteúdo. Blog IBPAD. https://ibpad.com.br/politica/pesquisa-qualitativa-duas-estrategias/
- Lopes, E. da S., & Pastorio, D. P. (2024). Tendências de pesquisa sobre experimentação na educação em ciências: um estudo exploratório. *Revista de Ensino de Ciências e Matemática*, 7(1), 41–62. https://lume.ufrgs.br/bitstream/handle/10183/287524/001240916.pdf?sequence=1&isAllowed=y
- Moreira, M. A. (2016). Metodologias de ensino inovadoras para a física básica. Editora da UFRGS.
- Nascimento, F. S., Silva, L. S., Sousa, J. M., & Moura, A. P. M. (2025). Materiais de baixo custo para experimentação no ensino de Física em São Raimundo Nonato-PI. *Rev. Pemo Revista do PEMO*. https://doi.org/10.47149/pemo.v7.e12367
- Nascimento, M. L. (2018). Diferenças de eficiência no ensino de Física nas escolas públicas e privadas da Zona Leste de Manaus [Trabalho de Conclusão de Curso de Graduação, Universidade do Estado do Amazonas].

 Repositório Institucional UEA. http://repositorioinstitucional.uea.edu.br//handle/riuea/980
- Ocaña-Fernández, Y., & Fuster-Guillén, D. (2021). A revisão bibliográfica como metodologia de pesquisa. Revista Tempos E Espaços Em Educação, 14(33), e15614. https://doi.org/10.20952/revtee.v14i33.15614

- Oliveira, M. A. de, & Lima, A. A. (2016). Experimentos de Física: renovando a prática docente com materiais de baixo custo. *Revista de Pesquisa Interdisciplinar*, 1(Ed. Especial), 259–264. https://doi.org/10.24219/rpi.v1iEsp.90
- Piaget, J. (1973). Estudos sociológicos. Forense Universitária.
- Qualibest. (2020). Entenda o que é pesquisa qualitativa e quantitativa. Instituto

 QualiBest. https://www.institutoqualibest.com/blog/dicas/entenda-o-que-e-pesquisa-qualitativa-e-quantitativa/
- Santos, W. D. (2021). A importância das atividades experimentais no ensino de física nas escolas. Trabalho acadêmico. https://repositorio.uniube.br/bitstream/123456789/1785/1/12373130.pdf
- Sasseron, L. H. (2020). Interações discursivas e argumentação em sala de aula: A construção de conclusões, evidências e raciocínios. *Ensaio Pesquisa em Educação em Ciências*, 22, e20073. https://doi.org/10.1590/1983-21172020210135
- Sasseron, L. H., & Carvalho, A. M. P. (2011). Alfabetização científica: uma revisão bibliográfica. *Investigações em Ensino de Ciências*, 16(1), 59-77. https://ienci.if.ufrgs.br/index.php/ienci/article/view/246
- Silva, B. C. da, Miranda, E., & Vianna, A. V. (2023). O papel do laboratório de ciências para experimentação nos Anos Iniciais: uma revisão integrativa da literatura. In *Anais do XIV Encontro Nacional de Pesquisa em Educação em Ciências (ENPEC)*. Caldas Novas, GO.

 https://editorarealize.com.br/editora/anais/enpec/2023/TRABALHO COMPLETO EV181 MD1 ID3219 TB1 280 13032023095418.pdf
- Silva, J. C. da, & Araújo, A. D. de. (2017). A metodologia de pesquisa em Análise do Discurso. *Grau Zero Revista de Crítica Cultural*, 5(1), 17–30.

 https://www.researchgate.net/publication/370409229 metodologia de pesquisa em Analise do Discurs o
- Silva, T. G. da, Conceição, M. J. S. da, Silva, A. G. da, Silva, A. da, Silva, L. J. da, & Farias Junior, A. J. D. (2024).

 Proposta de experimentos utilizando materiais de baixo custo sobre o conteúdo de máquinas simples.

 Revista Ibero-Americana de Humanidades, Ciências e Educação, 10(9), 1320–1328.

 https://doi.org/10.51891/rease.v10i9.15545
- Silva, Y. T. (2025). Metodologias alternativas no ensino de física: a eficácia de práticas experimentais de baixo custo em contextos educacionais vulneráveis. *Revista Campo da História*, 10(2). https://doi.org/10.55906/rcdhv10n2-029
- Tako, K. V., & Kameo, S. Y. (Orgs.). (2023). *Metodologia da pesquisa científica: dos conceitos teóricos à construção do projeto de pesquisa*. Editora Amplia. https://ampllaeditora.com.br/books/2023/03/MetodologiaPesquisa.pdf
- Todos Pela Educação, Fundação Santillana, & Editora Moderna. (2024). *Anuário Brasileiro da Educação Básica 2024*. https://anuario.todospelaeducacao.org.br/2024/capitulo-12-infraestrutura.html
- Urel, D. E. (2022). Paulo Freire e os três momentos pedagógicos. *Scientia Naturalis, 4*(1), 45-60. https://doi.org/10.29327/269504.4.1-4